Jumat, 18 Maret 2016





DISAKARIDA

Disakarida adalah karbohidrat yang tersusun dari 2 molekul monosakarida, yang dihubungkan oleh ikatan glikosida. Ikatan glikosida terbentuk antara atom C1 suatu monosakarida dengan atom O dari OH monosakarida lain. Hidrolisis 1 mol disakarida akan menghasilkan 2 mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam.
1.     Maltosa
Maltosa (gula gandum) tidak terdapat bebas di alam, melainkan diperoleh dari hasil hidrolisis amilum dengan katalis diastase atau hasil hidrolisis glikogen dengan katalis amilase. Hidrolisis maltosa akan menghasilkan dua satuan glukosa dengan menggunakan katalis enzim maltase atau katalis asam.



Maltosa adalah suatu disakarida dan merupakan hasil dari hidrolisis parsial tepung (amilum). Maltosa tersusun dari molekul α-D-glukosa dan β-D-glukosa.



Struktur maltosa

Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antarunit yaitu menghubungkan C 1 dari α-D-glukosa dengan C 4 dari β-D-glukosa. Konfigurasi ikatan glikosida pada maltosa selalu α karena maltosa terhidrolisis oleh α-glukosidase. Satu molekul maltosa terhidrolisis menjadi dua molekul glukosa.

2.     Sukrosa

Sukrosa terdapat  dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.


Struktur sukrosa

Sukrosa terhidrolisis oleh enzim invertase menghasilkan α-D-glukosa dan β-D-fruktosa. Campuran gula ini disebut gula inversi, lebih manis daripada sukrosa. Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air tidak digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal. Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.

Hidrolisis sukrosa menghasilkan glukosa dan fruktosa. Sukrosa memutar cahaya terpolarisasi ke kanan, sedangkan campuran hasil hidrolisis sukrosa memutar ke kiri, sehingga campuran glukosa-fruktosa yang dihasilkan disebut gula invert. Sukrosa bukan gula pereduksi dalam larutan air karena sukrosa tidak memiliki gugus aldehid, dibuktikan dengan tidak bereaksinya (mereduksi) dengan pereaksi Fehling, Benedict dan Tollens. Hidrolisis sukrosa dapat terjadi dengan menggunakan katalis asam encer atau enzim invertase. Sukrosa mudah larut dalam air.




 

Perbandingan tingkat kemanisan beberapa gula :



3.     Laktosa

Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul  β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4'-β.


Struktur laktosa


Hidrolisis laktosa dengan katalis enzim laktase akan menghasilkan glukosa dan galaktosa



Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.





POLISAKARIDA


   1.      Pengertian Polisakarida

Polisakarida adalah polimer dengan beberapa ratus hingga ribu monosakarida yang dihubungkan dengan ikatan glikosidik. Polisakarida dibedakan menjadi dua jenis, yaitu polisakarida simpanan dan polisakarida structural. Polisakarida simpanan berfungsi sebagai materi cadangan yang ketika dibutuhkan akan dihidrolisis untuk memenuhi permintaan gula bagi sel. Sedangkan polisakarida struktural berfungsi sebagai materi penyusun dari suatu sel atau keseluruhan organisme. Arsitektur dan fungsi suatu polisakarida ditentukan oleh jumlah monomer gula dan posisi ikatan glikosidiknya.

Berikut beberapa polisakarida yang penting.

1) Amilum (Pati)

Pati termasuk polisakarida jenis heksosan. Pati merupakan homopolimer glukosa dengan ikatan α-glikosidik. Berbagai macam pati tidak sama sifatnya, tergantung dari panjang rantai C-nya, serta rantai molekulnya lurus atau bercabang. Pati terdiri dari dua fraksi yang dapat dipisahkan dengan air panas. Fraksi terlarut disebut amilosa dan fraksi tidak larut disebut amilopektin. Amilosa mempunyai struktur lurus dengan ikatan α-(1,4)-d-glukosa, sedang amilopektin mempunyai cabang dengan ikatan α-(1,4)-d-glukosa sebanyak 4–5 % dari berat total. Perhatikan struktur amilosa berikut.





Peranan perbandingan amilosa dan amilopektin terlihat pada serealia, contohnya pada beras. Semakin kecil kandungan amilosa atau semakin tinggi kandungan amilopektinnya, semakin lekat nasi tersebut. Beras ketan praktis tidak ada amilosanya (1 – 2%), sedang beras yang mengandung amilosa lebih besar dari 2% disebut beras biasa atau beras bukan ketan. Berdasarkan kandungan amilosanya, beras (nasi) dapat dibagi menjadi empat golongan yaitu (1) beras dengan kadar amilosa tinggi 25 – 33%; (2) beras dengan kadar amilosa menengah 20 – 25%; (3) beras dengan kadar amilosa rendah (9% – 20%); dan (4) beras dengan kadar amilosa sangat rendah (< 9%).

2) Selulosa

Selulosa merupakan serat-serat panjang yang bersama-sama hemiselulosa, pektin, dan protein membentuk struktur jaringan yang memperkuat dinding sel tanaman. Pada proses pematangan, penyimpanan, atau pengolahan, komponen selulosa dan hemiselulosa mengalami perubahan sehingga terjadi perubahan tekstur.

Perhatikan struktur selulosa berikut.


Seperti juga amilosa, selulosa adalah polimer berantai lurus α -(1,4)-d-glukosa. Perbedaan selulosa dengan amilosa adalah pada jenis ikatan glukosidanya. Selulosa oleh enzim selobiose, yang cara kerjanya serupa dengan β -amilase, akan menghasilkan dua molekul glukosa dari ujung rantai.

Pada penggilingan padi, dihasilkan hampir 50% sekam yang banyak mengandung selulosa, lignin, serta mineral Na dan K yang mempunyai daya saponifikasi. Selulosa dalam sekam padi dapat dipergunakan untuk makanan ternak, tetapi kandungan ligninnya harus dihilangkan terlebih dahulu, biasanya dengan KOH. Di beberapa negara, misalnya Taiwan, telah diusahakan untuk melarutkan lignin dengan NH4OH sebagai pengganti KOH. Penambahan NH4OH ini mempunyai keuntungan berupa penambahan sumber N dalam makanan ternak.

Di samping itu NH4OH harganya jauh lebih murah dibandingkan dengan KOH.

Selulosa sebagai bahan pembuatan kertas. Kayu dipotong kecil-kecil dan dimasak dalam kalsium bisulfit untuk melarutkan ligninnya. Selanjutnya selulosa diambil dengan penyaringan. Kegunaan selulosa yang lain adalah sebagai bahan benang rayon.

3) Hemiselulosa

Bila komponen-komponen pembentuk jaringan tanaman dianalisis dan dipisah-pisahkan, mula-mula lignin akan terpisah dan senyawa yang tinggal adalah hemiselulosa. Hemiselulosa terdiri dari selulosa dan senyawa lain yang larut dalam alkali. Dari hasil hidrolisis hemiselulosa, diperkirakan bahwa monomernya tidak sejenis (heteromer). Unit pembentuk hemiselulosa yang utama adalah d-xilosa, pentosa dan heksosa lain.

Perbedaan hemiselulosa dengan selulosa yaitu hemiselulosa mempunyai derajat polimerisasi rendah dan mudah larut dalam alkali tapi sukar larut dalam asam, sedangkan selulosa adalah sebaliknya. Hemiselulosa tidak mempunyai serat-serat yang panjang seperti selulosa, dan suhu bakarnya tidak setinggi selulosa.

4) Pektin

a) Senyawa Pektin

Pektin secara umum terdapat di dalam dinding sel primer tanaman, khususnya di sela-sela antara selulosa dan hemiselulosa. Senyawa-senyawa pektin juga berfungsi sebagai bahan perekat antara dinding sel yang satu dengan yang lain. Bagian antara dua dinding sel yang berdekatan tersebut disebut lamela tengah (midle lamella).

Senyawa-senyawa pektin merupakan polimer dari asam d-galakturonat yang dihubungkan dengan ikatan β-(1,4)-glukosida. Asam galakturonat merupakan turunan dari galaktosa.

Pektin terdapat dalam buah-buahan seperti jambu biji, apel, lemon, jeruk, dan anggur. Kandungan pektin dalam berbagai tanaman sangat bervariasi. Bagian kulit (core) dan albeda (bagian dalam yang berbentuk spons putih) buah jeruk lebih banyak mengandung pektin daripada jaringan perenkimnya.

Pektin berfungsi dalam pembentukan jeli. Potensi pembentukan jeli dari pektin menjadi berkurang dalam buah yang terlalu matang. Selama proses pematangan terjadi proses dimetilasi pektin dan ini menguntungkan untuk pembuatan gel. Akan tetapi dimetilasi yang terlalu lanjut atau sempurna akan menghasilkan asam pektat yang menyebabkan pembentukan gel berkurang.

b) Gel Pektin

Pektin dapat membentuk gel dengan gula bila lebih dari 50% gugus karboksil telah termetilasi (derajat metilasi = 50). Adapun untuk pembentukan gel yang baik maka ester metil harus sebesar 8% dari berat pektin. Makin banyak ester metil, makin tinggi suhu pembentukan gel.

5) Glikogen

Glikogen merupakan “pati hewan” banyak terdapat pada hati dan otot, bersifat larut dalam air (pati nabati tidak larut dalam air). Jika bereaksi dengan iodin akan menghasilkan warna merah. Senyawa yang mirip dengan glikogen telah ditemukan dalam kapang, khamir, dan bakteri. Glikogen juga telah berhasil diisolasi dari benih jagung (sweet corn). Hal ini penting diketahui karena sejak lama orang berpendapat bahwa glikogen hanya terdapat pada hewan.

Glikogen merupakan suatu polimer yang struktur molekulnya hampir sama dengan struktur molekul amilopektin. Glikogen mempunyai banyak cabang (20 – 30 cabang) yang pendek dan rapat. Glikogen mempunyai berat molekul (BM) sekitar 5 juta dan merupakan molekul terbesar di alam yang larut dalam air.

Glikogen terdapat pula pada otot-otot hewan, manusia, dan ikan. Glikogen disimpan dalam hati hewan sebagai cadangan energi yang sewaktu-waktu dapat diubah menjadi glukosa. Glikogen dipecah menjadi glukosa dengan bantuan enzim yaitu fosforilase.

Permasalahan :
Kenapa poli sakararida itu sukarlarut dalam air ?

2 komentar:

  1. assalamualaikum wr wb

    nama saya Ririn Eka Yuliana dengan nim RSA1C114012 akan membantu permasalahan aminah, berdasarkan literatur Polisakarida berbobot
    molekul tinggi karena terdiri atas banyak molekul monosakarida. seperti yg kita tahu monosakarida trdr atas 3-6 atom karbon,nah karena polisakarida terdiri dari banyak molekul monosakarida,jumlah atom karbon nya tentu semakin banyak.banyak nya jumlah atom karbon tersebutlah yang menyebabkan polisakarida sukar larut dalam air karen ikatan nya semakin kuat dan tidak mudah lepas.

    terimakasih semoga membantu :)

    BalasHapus
  2. Assalamualaikum wr wb
    Saya Rini Alfiah As NIM RSA1C114011 mencoba menjawab permasalahan aminah..

    Polisakarida merupakan senyawa yang terdiri dari gabungan molekul- molekul monosakarida yang banyak jumlahnya, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida. Semakin banyak jumlah atom karbon maka semakin kuat ikatan atomya, itulah yang menyebabkan polisakarida tidak larut dalam air.

    Semoga Membantu :)

    BalasHapus